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Abstract

Optimum trajectories for the Applications

Technology Satellite (ATS)-E mission are obtained.

Analysis, procedure, and results are presented.

The trajectories are numerically integrated from

launch to insertion into the final orbit. As a

result of a much smaller than optimum apogee motor,

these trajectories, unlike conventional synchro-

nous orbit trajectories, require non-clrcular park-

ing orbits and large amounts of inclination reduc-

tion before the solid motor burn at apogee. Con-

straints on parking orbit perigee radius and dura-

tion are included. Figures are presented deserlb-

ing the results.

Intuitively, it seems reasonable that this conven-

tional profile is near optimum if the burn and

coast durations may be varied to maximize the mass

at the end of each burn. However, if the total

impulse of the final burn is fixed at less than

the optimum value, the conventional trajectory

must be modified to yield maximum payload to the

final orbit. In particular, the parking orbit is

noncircular, the perigee radius of the transfer

orbit increases, and the second burn removes more

than a minor part of the inclination. The optimi-

zation problem is to find the best combination of

these changes and other less important ones to

yield maximum payload to circular synchronous equa-'

torial orbit.

Introduction

The Applications Technology Satellite (ATS)-E

mission is a circular synchronous equatorial orbit

mission. The ATS program has the objective of

advancing technology in areas which may have appli-

cation to future spacecraft. The experiments which

are conducted are spacecraft, con_nunlcation, and

science orlented.

The spacecraft-orlented experiments on the

ATS-E provide information on power supply and con-

trol systems, a gravity-gradient s!abilization

system, resistojet and ion mlcropound thrusters,

and synchronous environment. The scientific-

oriented experiments gather data on the particle

(electron and proton) distribution and flux and

the character of the electric and magnetic fields

at synchronous altitude.

The launch vehicle for the ATS-E mission was

an Atlas-Centaur and the solid apogee motor was a

part of the spacecraft system. The apogee motor

total impulse was sized for the early ATS missions

on the Atlas-Agena launch vehicle, which has less

payload capability than the Atlas-Centaur. The

apogee motor, although smaller than optimum for

the larger vehicle, remained unchanged.

For an optimally sized apogee motor, a con-

ventional trajectory to circular synchronous

equatorial orbit is near optimum. A conventional

trajectory consists of five consecutive phases

as shown in Fig. 1. The first phase is an ascent

from the launch site to a circular parking orbit.

To maximize the mass in orbit, a 90 ° launch azi-

muth is used, which results in a parking orbit

inclination equal to the launch site latitude.

This inclination must be removed during the tra-

Jectory. The second phase is a coast arc to the

proximity of the equator. A small portion of the

required plane change is removed by the second

burn, the third phase. Much more importantly, the

second burn must place the vehicle in a transfer

orbit whose apogee is over the equator and equal

to synchronous altitude. The vehicle coasts to

apogee in the fourth phase. The fifth phase con-
sists of a final burn that removes the major por-

tion of the inclination and circularizes the orbit.

1

Optimization of the conventional trajectory to

circular synchronous equatorial orbit has been f.,
treated by several authors. Hoelker and Silber _±)

present a detai_ analysis of the conventional
problem. Rider _ _ considers the problem of chang-

ing the plane and also the radius of a circular

orbit. These and other similar studies treat the

problem as one of changing the plane and radius of

a circular orbit, ignoring the ascent to the first

(parking) circular orbit. This is satisfactory

for the conventional case. However, an unconven-

tional trajectory is more complex since the parking

orbit is in general noncircular. The ascent must

Be included as part of the optimization problem.

Therefore, a more sophisticated optimization pro-

cedure is required for unconventional trajectories.

Additionally, the references mentioned above are

general and consequently are not concerned with

constraints which may alter the acceptability of a

given trajectory, such as limitations on coast time

or the minimum perigee radius of the noncircular

parking orbit.

The problem of optimizing trajectories to

circular synchronous equatorial orbit may be con-

sidered as a multistage launch vehicle optimization.

Several analyses have been performed to optimize

multistage launch vehicles, including one by the
authors of this report _#. For optimizing the un-

conventional trajectory, the analysis in Ref. 3

was expanded to three dimensions and also, to in-

clude a constraint on the parking orbit perigee

radius. The perigee radius constraint must be

included to limit aerodynamic heating on the space-

craft.

The Applications Technology Satellite (ATS)-E

mission on the Atlas-Centaur vehicle requires an

unconventional trajectory to achieve maximum pay-

load. The final burn is performed by a solid

motor which is part of the spacecraft system. That

motor is significantly smaller than optimum.

There are spacecraft and launch vehicle constraints

on the trajectory which must be incorporated into

the solution. The perigee radius and the parking

orbit coast duration are limited. The results for

this mission are presented.
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Problem Description

A conventional trajectory to circular syn-

chronous equatorial orbit launched from the Eastern

Test Range consists of five phases. They are:

i. Ascent to parking orbit.

2. Parking orbit coast.

3. Second impulse.

4. Transfer orbit coast.

5. Third impulse or apogee burn.

Figure 1 shows the planar characteristics of

the conventional trajectory. The nonplanar charac-

teristics are shown in Fig. 2. The vehicle is

launched at an azimuth of 90 ° in order to maximize

the vehicle mass in parking orbit and to minimize

tile inclination of the parking orbit. The circular

parking orbit altitude is as low as aerodynamic

heating constraints will allow, usually about 165

to 185 kilometers. The parking orbit coast time

is usually about fifteen minutes - the time re-

quired to coast from orbit insertion to the first

equator crossing. The third phase places the

vehicle in a transfer orbit whose apogee and peri-

gee are over the equator. The apogee altitude is

about equal to the required altitude for a circular

synchronous orbit. The transfer orbit coast time

is about five and one-half hours. The third im-

pulse, the apogee burn, occurs at apogee of the

transfer orbit. Apogee is designed to occur at the

equator and at the proper altitude for injection

into the final orbit. A small part of the inclina-

tion is removed by the second impulse with the re-

mainder being removed by the apogee burn, In this

conventional method, the final conditions at the

end of each burn are known and the mass can easily

be maximized progressively phase by phase if the

second and third impulse sizes are unspecified.

Now suppose that the total impulse of the

third burn is fixed. Then the transfer orbit must

be constructed such that the &V available from the

third impulse is exactly that required to place

the vehicle in circular synchronous equatorial

orbit. If the &V available from a fixed third

total impulse is less than that required to cir-

cularize and equatorialize the orbit for the mass

available from a conventional ascent and second

impulse, then the trajectory to transfer orbit

insertion must be altered to reduce the _V required

of the third impulse. This can be done by reducing

the required plane change and the AV required for

circularization. For reasons described at length

in the Results and Discussion section, the uncon-

ventional trajectory needed to reduce the &V re-

quired of the apogee motor varies in many respects

from the conventional profile. The most dramatic

changes are a noncircular parking orbit, nontrivial

inclination reduction by the second impulse, and a

significantly nonequatorial latitude for the second

impulse. As is desired, the changes result in

lowering the &V required of the fixed apogee motor.

However, in this unconventional profile, the final

conditions required at the end of the ascent and

second impulse are unknown. They might be deter-

mined by varying those final conditions parametri-

cally until the optimum is obtained. However,

because of the number of variables, this process

is clumsy and time consuming.

Calculus of Variations Solution

A Calculus of Variations formulation was used

to miximize the payload to circular synchronous

equatorial orbit without resorting to a parametric

search. The optimization of the atmospheric por-

tion of the trajectory is omitted from the varia-

tions/ analysis since the steering is constrained

by factors other than optimizing performance, such

as aerodynamic loading and heating limitations.

The analysis considers the problem from the point

in the trajectory that the atmosphere can be ne-

glected to insertion into the final orbit. In

addition to optimizing the steering, the durations

of any unspecified burns and coasts are optimized

while maintaining the specified perigee radius of

the parking orbit. The analysis is presented in

appendix B. It is derived in three dimensional

rectangular coordinates in a manner similar to

Ref. 4. The equations for optimum burn and coast

duration are obtained from an analysis similarto

that used by the authors in Ref. 3. It is nece§-

sary to extend the analysis to include an inter-

mediate boundary condition which specifies the

perigee radius of the parking orbit at the end of

the ascent. Additionally, the oblate earth model

must be added to the variations/ analysis. The

effect of oblateness is not negligible in trajec-

tories to circular synchronous equatorial orbit.

Trajectories to that orbit arelong, minimally

around six hours. Oblateness is the major perturb-

ing force during most of a trajectory. Because of

the large change in inclination required to perform

the mission, any perturbation in the inclination,

thus increasing or decreasing the amount of plane

change required of the propulsion systems, affects

the final mass and should be considered in the

analysis.

The trajectories are numerically integrated

to incorporate a nonimpulsive vehicle model and to

include the effects of oblateness and small thrusts

over long periods of time which cannot be conven-

iently treated impulsively.

The analysis presented in appendix B requires

the solution of a two point boundary value problem.

The solution to the two point boundary value prob-

lem for the circular synchronous orbit problem with

a fixed apogee burn and parking orbit coast time re-

quires satisfaction of a minimum of eight final con-

ditions with an equal number of initial conditions.

The number and specific initial and finalconditions

are explained in appendix B.

Procedure

A simple Newton Raphson iteration scheme was

used to solve the two point boundary value problem.

This scheme was used successfully with as many as

twelve iteration variables. For further explana-

tion of the iteration scheme, see Ref. 5.

The partial derivatives required for the iter-

ation scheme were obtained by integrating the ad-

Joint equations. These were obtained as in Ref. 4.

Solutions were initially obtained by using a spher-

ical earth model for the adjoint equations, but it

was found that including the oblateness terms im-

proved the convergence properties of the problems.

In some problems of this type, it was found that

including the oblateness terms was necessary to

obtain convergence.



It wasdifficult to obtainsolutionsto these
problemsbecauseof thehighdegreeof nonlinearity
of manyof the derivativesaswell asthediffi-
culty of guessingat the initial valuesof the
thrust anglein pitch andyawandtheir rates. A
techniquewasdevisedto systematicallyproceed
froma simple,easilyconvergedproblemto the
final solution. Thistechniqueis describedat
lengthin appendixC. Othertechniques,suchas
gradientmethods,mightavoidsomeof thediffi-
culties associatedwith the NewtonRaphsontechni-
que. However,themethoddescribedin the appendix
is convenient,straightforward,andadequate.
After obtainingonesolution,proceedingto others
in theregionof interest is not difficult.

Results and Discussion

I. Launch Vehicle

The spacecraft is launched by an Atlas-

Centaur, a two-and-a-ha/f stage vehicle. The Atlas

is propelled by two booster engines and one sus-

talner engine. The booster engines are Jettisoned

at a predetermined acceleration level. The sus-

tainer engine continues to burn (sustainer solo).

The Centaur insulation panels and then the payload

fairing are Jettisoned in this phase. The sus-

tainer solo ends at propellant depletion and the

Atlas stage is Jettisoned. After about ten seconds,

the Centaur engines, burning hydrogen and oxygen,

ignite and burn until the desired parking orbit is

reac_ed. During the parking orbit, a hydrogen

peroxide propulsion system is used to maintain a

very small acceleration for propellant retention

and for attitude control. At the end of the park-

ing orbit, the _entaur engines burn again until

the proper transfer orbit is achieved. After en-

gine shutdown, the Centaur control system acquires

the proper orientation for the spacecraft burn,

the Centaur and the spacecraft separate, and the

spacecraft is spun up for stability. The space-

craft coasts up to the proper altitude maintaining

the separation attitude. The spacecraft motor

burns to place the spacecraft in the final orbit.

The spacecraft apogee motor has thrust of 22 240

nevtons and an effective specific impulse of

279.1 seconds. The total impulse available from

the motor is 950 900 newton-seconds, which corre-

sponds to a propellant load of 347 kilograms.

ii. Tra_ectp.r_ Description

The trajectory starts with a short vertical

rise, followed by a rapid pitchover phase in the

desired azimuth direction. The amount of pitch-

over determines the amount of lofting during the

atmospheric portion of the trajectory. The re-

mainder of the atmospheric phase (which is assumed

to end at booster stage Jettison), is flown with a

near-zero angle of attack steering program (des-

cribed in Ref. 5), to minimize vehicle heating and

aerodynamic loads. The thrust direction is con-

strained to be parallel to the launch azimuth

plane, which is established at launch.

Since the ATS-E spacecraft motor has a fixed

propellant load, the trajectory must be designed

such that the &V required at apogee of the transfer

orbit is exactly that required to place the space-

craft in the desired final orbit. As mentioned

earlier, the ATS-E motor is much smaller than opti-

mum. The Atlas-Centaur can put more mass in a con-

ventlonal transfer orbit than the apogee motor can

place in circular synchronous equatorial orbit.

Therefore, an unconventional trajectory is required

to lower the AV required of the apogee burn.

An optimum unconventional trajectory was ob-

tained for the ATS-E mission to circular synchro-

nous equatorial orbit. The AV required of the

apogee motor is reduced by decreasing each of the

two components which together make up the total &V -

that needed to circularize the orbit and to reduce

the inclination to zero. The AV for circulariza-

tion is.reduced by increasing the horizontal velo-

city at apogee of the transfer orbit without adding

radial velocity. Any radial velocity would have to

be removed by the apogee burn. Increasing the

horizontal velocity at a fixed apogee radius is

equivalent to raising the perigee radius of the

transfer orbit - thereby decreasing the ellipticity

of the transfer orbit.

The AV required at apogee for reducing th_

inclination to zero is decreased by lowering the

inclination of the transfer orbit. However,

raising the velocity at apogee increases the AV

required for inclination removal at a fixed trans-

fer orbit inclination. Therefore, the combination

of the two methods represents a compromise which

is optimized as part of the total problem.

In order to obtain the modified transfer orbit,

the trajectory to insertion into that orbit is
modified. Most of the inclination reduction is

performed by the second burn near the equator.

Only a small part of the inclination change to

transfer orbit insertion is accomplished in the

ascent to parking orbit.

The characteristics of the optimum parking

orbit are changed from the conventional profile to

increase the perigee radius of the transfer orbit.

An elliptical rather than circular parking orbit

is used to raise the altitude of the second burn.

The perigee radius of the optimum parking orbit

remains limited by aerodynamic heating considera-

tion at some acceptable value. Since injection

into the parking orbit occurs near perigee, the

vehicle must coast along the ellipse to a higher

radius. Due to limitation of the coast duration

for the ATS-E mission, the Second burn was required

to occur near the first equator crossing. (From

tracking or other considerations, a second (or

greater) equator crossing could be chosen for the

second burn, which would increase the parking or-

bit coast time by a half period (or more)). The

latitude of the second burn is no longer equatorial

as in the cohventional case since the optimum posi-

tion for raising the perigee radius and decreasing

the inclination is dependent on radius and velocity

as well as latitude. The parking orbit coast time

is greater for this unconventional profile since

the time to the equator is greater for an ellipti-

cal than for a circular parking orbit and addition-

ally, the second burn occurs significantly south

of the equator. Optimum true anomalies are found

for the beginning and end of the parking and trans-

fer orbit coasts. In addition, the optimum com-

bination of the changes Just described as charac-

terizing the unconventional profile is selected.

The desired final inclination for the ATS-E

mission is not exactly zero. The perturbations of

the sun, moon, and oblateness of the earth cause



a spacecraftto drift fromanexactlyequatorial
orbit. Sincezeroinclination is nota stable
condition,a final orbit inclinationyieldingthe
smallestaverageinclinationoverthe lifetime of
thespacecraftis desired. Smallfinal inclina-
tionswith theproperinertial ascendingnodeare
foundto yield acceptableinclination overthe
lifetime of the satellite. Theparticular combi-
nationsof final orbit inclinationandascending
nodearefunctionsof thepositionsof the sunand
moon,whichare in turn functions of launch time

and date. Therefore, data were obtained for pay-

load to circular synchronous orbits as a function

of final inclination. Negative inclinations are

included in the data. This convention indicates

that the node has been switched approximately

180 ° by the apogee burn.

The Atlas-Centaur has a twenty-flve minute

limitation on parking orbit coast time for the

m_sion. Therefore, inclusion of that constraint

is necessary for realistic determination of vehicle

capability. However, optimizing the coast time

provides a more dramatic and obvious demonstration

of the optimization procedure. Launch azimuth was

not optimized along with the other trajectory

parameters. The effect of launch azimuth was

investigated parametrically to determine its ef-

fect on separated spacecraft mass.

Figure 3 presents separated spacecraft mass

as a function of launch azimuth for final inclina-

tions of (-)2 ° and 5.25 ° for both optimum and

twenty-five minute parking orbit coast times.

Separated spacecraft mass is the mass of the

spacecraft when it is separated from the Centaur

vehicle. This figure shows that the separated

spacecraft mass is rather insensitive to launch

azimuth. Hence, for simplicity, launch azimuth

is fixed at 90°for the remaining figures.

Figure 4 shows the separated spacecraft mass

as a function of final inclination. The separated

spacecraft mass decreases as final inclination

decreases. Figures 5 and 6 show the effect of

final inclination on the transfer orbit inclina-

tion and inertial velocity at apogee. As might

be expected, as the final inclination decreases,

so does the transfer orbit inclination.

As might not be expected, the velocity at

apogee also decreases as final inclination de-

creases. Figures 7 through 12 show why this

occurs. Figure 7 shows the latitude of the second

Centaur engine start as a function of final in-

clination. Since the second burn is required to

remove more inclination as final inclination de-

creases, it is advantageous to move the burn

nearer the equator for more efficient plane chang_

Figure 8 shows that the longitude of second burn

start also decreases as final inclination de-

creases. These trends decrease the parking orbit

coast arc as final inclination decreases. This

is reflected in a decrease in the true anomaly at

second Centaur cut-off, as seen in Fig. 9. Fig-

ures lO, ll, and 12 also show additional effects

of moving the second burn nearer the equator. It

decreases the parking orbit coast time, the altl-

tude of the second burn, and the apogee altitude

of the parking orbit. These all occur as a result

of the decrease in parking orbit coast arc. These

figures show why the apogee velocity is decreasing

as final inclination decreases. The perigee

radius of the transfer orbit decreases as the alti-

tude of the second burn decreases. The apogee al-

titude of the transfer orbit is almost constant at

synchronous altitude, hence as perigee decreases,

so does apogee velocity.

Figures 5 and 6 also indicate that more £V is

required of the apogee motor as final inclination

decreaseS. It can be seen that both the plane

change and circularization AV are increasing. How-

ever, Fig. 4 shows that the ignition mass of the

fixed solid moto_ is decreasing, which increases

the AV capability of the apogee motor.

Figure 13 shows the percentage of the Centaur

propellant used in the first burn. The figure

shows that as the final inclination increases, the

first burn duration increases as the apogee alti-

tude increases (Fig. 12).

The final longitude as a function of final

inclination is shown in Fig. 14. It shows that

longitude decreases as final inclination increases.

The satellite remains at the longitude indicated

only when the inclination is zero, the orbit cir-

cular, and the altitude synchronous. For other

inclinations, the position (latitude and longitude)

of the satellite subpoint describes a figure eight

on the surface of the rotating earth. The longi-

tudes indicated in Fig. 14 are injection longitudes,

not necessarily the longitude at which the equator

crossing occurs. For small inclinations, the lon-

gitude does not vary greatly during the period of

the orbit.

Now consider the limitation of parking orbit

coast time. Twenty-five minutes is less than

optimum for all the final inclinations considered,

as seen in Fig. 10. The differences in separated

spacecraft mass are shown in Fig. 4. As seen from

these figures, as the difference between the optl-

mum and limited coast times decreases, the loss in

payload due to coast time limitation decreases alsG

The coast time limitation reduces the advan-

tage of raising the apogee of the parking orbit as

final inclination increases. The energy required

to raise apogee does not yield the payload in-

creases available with optimum coast time since

the altitude cannot be acquired as efficiently in

the shorter coast time. The energy is better

spent by the second burn to reduce the inclination

of the transfer orbit. This is reflected in sev-

eral of the figures. In Fig. 5, the transfer or-

bit inclination for the coast limited case lies

well below the optimum case. The lower second

burn altitude is reflected in the lower velocity

at apogee of the transfer orbit, as seen in Fig. 6.

Because the parking orbit characteristics do not

vary greatly with final inclination, the latitude

and longitude of the second burn and the true

anomaly at second Centaur cut-off are nearly con-

stant. These may be seen in Figs. 7, 8, and 9.

The conclusions which may be drawn for the per-

centage of Centaur propellant used in the first

burn and final longitude (Figs. 13 and 14), are

similar to those for the optimum coast case.

Summary of Conclusions

Analysis and results are presented for tra-

Jectories to circular synchronous equatorial orbit

where the apogee motor is fixed at a smaller than



optimumtotal impulse.Theresults for thesmall
apogeemotorcasewereobtainedfor theATS-E
mission,whichusedtheAtlas-Centaurlaunchve-
hicle.

Theresults showsomeof the characteristics
of optimumtrajectoriesfor launchvehicle-apogee
motorcombinationswheretheapogeemotoris smal-
ler thanoptimum.Moreimportant,theresults
demonstratethat optimumtrajectoriesto circular
synchronousequatorialorbits maybeobtainedwith
detailedandhencecomplicatedvehiclemodelsfor
unconventional(smallapogeemotor)trajectory
profiles. Theseresultsmaybeobtainedwithout
resortingto exoticmathematicalproceduresfor
solvingthetwopoint boundaryvalueproblem.
Theseresultswereobtainedwith a simpleNewton-
Raphsoniteration scheme.Thepartial derivatives
wereobtainedby integratingthe adJointequations.
Thesimpleiteration schemewith the integrated
partial derivativesis ableto obtainsolutionsto
thehighlynonlineartwopointboundaryvalue
problemevenwhenthenumberof initial andfinal
conditionsreachestwelve.

C

g

GI, G2

h

J

m

N

P

r

rp

S

t

T

V

X

Appendix A

first integral of Euler-Lagrange equa-

tions, kg/sec

eccentricity, N.D.

energy per unit mass, m2/sec 2

unit thrust direction, N.D.

functional defined by equation (3)

kg/sec

intermediate boundary equation

gravity acceleration, m/sec 2

components of oblate gravity accelera-

tion, m/sec 2

spherical earth gravity constant, m3/sec 2

angular momentum per unit mass, m2/sec

functional to be minimized, kg

_S S, kg

total number of stages, N.D.

semi-latus rectum, m

radius, m

perigee radius, m

variational switching function, N.D.

time, sec

thrust, N

velocity, m/sec

state variable

E

unit vector pointing at north pole, N.D.

mass flow rate, kg/sec

Jump factor

Lagrange multiplier, kg/sec

Lagrange multiplier, kg-sec/m

Lagrange multiplier, kg/m

Lagrange multiplier, N.D.

pitch attitude, keg.

yaw attitude, deg.

Superscripts

time derivative

- vector

A
unit vector

f final

o initial

Subscripts

i,j,k,

g,m,n stage numbers

f final

o initial

d desired

pk parking orbit

Operators

X

_( )

dot product

cross product

differential

gradient with respect to

partial derivative

Appendix B

Derivation of Optimum Control

As mentioned in the Analysis Section, the

optimization of a trajectory to a circular synchro-

nous equatorial orbit may be considered as the pro-

blem of optimizing a multi-stage launch vehicle to

a particular final orbit. The optimization problem

to be considered here begins at booster Jettison,

which is assumed to be a fixed position and velo-

city. The sustainer portion of the Atlas continues

until propellant depletion. The sustainer is Jet-

tisoned and a few seconds later the first Centaur

burn begins. Its duration is variable and must be

optimized. The perigee radius of the parking orbit

is fixed. The duration of the parking orbit

may or may not be optimized. The parking orbit is

not a true coast since a small acceleration is



maintainedfor propellantretention. Theduration
of thesecondCentaurburnmustbeoptimized,fol-
lowedbyanoptimumtransferorbit coastCatrue
coast),anda final burnof fixed total impulse.
Theanalysispresentedin this appendixto solve
this problemis a specialcaseof the analysis
derivedin Ref.3, withanadditionalconstraint-
parkingorbit perigeeradius.

Thevariationalproblemto besolvedis to
find the steeringprogramandvariousstagedura-
tionswhichmaximizethepayloadcapabilityof a
multi-stagelaunchvehicleto a specifiedfinal
orbit. Thetrajectorymustsatisfy certainini-
tial, final, andintermediateconditionsonthe
statevariables. Thethrust, propellantflowrate,
andJettisonweightfor eachstageareassumedto
beconstant.Theequationsof motionandcon-
straints for eachstagemaybewrittenas

• Ti ^
v -C-(3) -_ f =E (ia)

r - v = 0 (lb)

+ _i = 0 (ic)

f" _-i:0 (Id)

where f is the unit thrust direction $n_ G (_) is

the oblate?earth gravity acceleration [6),

which may also be written

^ A A

_(_) = Gl(r , _ • z) r + G2(r , _ • z)z (2)

(All symbols are defined in appendix A.) Suppose

that each stage of the vehicle is numbered con-

secutively starting with the booster, For analy-

sis purposes a stage change occurs when the thrust

and/or propellant flow rate changes and/or a mass

is jettisoned. A Bolza formulation of the varia-

tional problem is used [7), and the functional to

be minimized is written as in Hcf. 3 as

N f tiJ = -mf + _ F i dt (3)

i=2 _i-1

where the functional F i for each stage is

+ _(i + _i) ÷ _(_ "_ - l) (4)

The resulting Euier-Lagrange equations are

• _ ^ ^
+ G I [ + ([ • r) _rr GI - GI([ " r)_

^

+ (% " z) _rr G2 = _ (Sb)

T

o-_" _:o (Se)

^ T i

The o_tlmum thrust direction _ is nbtained by com-

bining equations (ld) and (5d) and using the

Welerstrass E-test. This procedure results in

} = _, (6)

Integrals of the Motion

Since F does not explicitly

an integral of the motion is

depend on time,

C + k • G + _ • v + --Ti k - o9i = 0 (7)
m

When a s_herical gravity model is assumed (i.e.,
_(r-) _ G_/r 5 r-), three additional integrals of

the motion exist which are given by

Xv + _ X r = constant

Since _, _, r, and _ are all continuous except

where an intermediate boundary condition is im-

posed (as will be shown later), the three integrals

are constant across staging points where continuity

holds. However, for the oblate gravity model used

in this analysis, only a single component of the

above vector integral is constant, as can be

verified by differentiation with respect to tim&

(_ X v + _ × _) • z = constant (8)

Transversalit_ E_uation

The transversality equation for this problem

is

N ti

dJ= i--_ (C dt + _ • dv + _ • d_ + _ dm)t i'l

- ¢mf (9)

which is set equal to zero for an o__timal solution.

Reference 3 shows that: i) _ and _ are continuous

everywhere if there are no intermediate boundary

conditions. If the intermediate boundary condition

(assumed to occur at a staging point) is expressed

as

g(_,_)= o (lO)

reference 8 shows that the discontinuities in

and _are e_-_ and e_-g, respectively. The vari-

able e is used as an initial condition in the two

point boundary value problem to satisfy the inter-

mediate boundary condition (eq. (i0)). 2) The

equations that must be satisfied to optimize the

duration of the powered and coast stagesare de-

rived in Ref. 3. The applicable results are pre-

sented here. Let j be the first optimized powered

stage. Then for constant jettison weight the equa-

tion for optimizing stage _ is

t-i

(s_- s_+I)= o (ill
i=J

where o and f refer to Initla/ and final values

and the S functions are defined as

_" G +U " v +-fix
C

Si=l_" a= - _i ' _i _ o
(l_a)



si - o, _i _ o (12b)
where the right side of equation (12a) is obtained

by using equation (7). For coasting stages

(_i _ Ti _ O) to be optimized, the equation

ci= (l" G+_. v-)=o (i3)

must be satisfied for maximum payload.

3) For free initial or final state variable x,

the required or final condition for maximum pay-

load (Ref. 4) is

_+ _ • :ix= o

Initial Conditions

If the initial position and velocity are

s?_c!fied__the initial values of any five of the

six h and _ may be used as variable initial

conditions in order to satisfy the required final

conditions of the two point boundary value pro-

blem. In order to eliminate the difficulty asso-

ciated with guessing at values of the multipliers,

the values of h and _ can be ex_0ressed in te.rms of
pitch and yaw attitude (_ and@) and rates (_

and _). These equations ma_ be fo_und in Ref. 4,

appendix C. The values of k and _ are then cal-

culated from:

= - _ - _ (lSb)

The value of % can be set equal to unity without

loss of generality. The initial value of _ can

be calculated in closed form, as will be shown

by the following development.

Final Conditions

A

(_gx_+_rgX_O .,--o (17)

It will be shown later that equation (17) is

satisfied for all functions g used herein.

The calculation of _ proceeds as follows:

(_xv+_x:) • z= (_ xv) • z

(_ x • z - (k x ' z = o

(_ ^ r) ^?:=: x:-_x "z
(_ x :) • z (i8)

Computing _ with equation (18) guarantees that

equation (16a) will be satisfied.

Intermediate Conditions

As explained earllerj it is necessary to

constrain the perigee radius at injection into

the first parking orbit. Otherwise, the optimum

solution would result in the parking orbit injec-

tion and/or the equator crossing occurring at very

low altitudes, thus violating spacecraft heating

constraints. Therefore, the intermediate con-

straint is

g(:, 7) = rp - rp, d = 0 (19)

where the desired value corresponds to the perigee

altitude. By using equations found in Refo 9,

equation (19) can be written as

- rp, d = 0i + e (2o)

where

h • h
(semi-latus rectum) (21a)

Final conditions for both the conventional

and unconventional synchronous equatorial orbit

mission require a circular orbit at synchronous

orbit altitude with prescribed inclination. If

the required inclination is non-zero, both the

longitude of the ascending node and the injection

point in the final orbit are free for optimiza-

tion. As shown in Ref. 4, the corresponding

auxiliary variational final conditions are

(:xv+_ x:) • z=O (i6a)

and

(ixv+_ x_ • Cry7)=0 (iSb)

If the desired inclination is zero, equations

(16a) and (16b) degenerate into one equation

(zero inclin_tlo_ is equlvalen_ to two final

conditions, r " z = 0 and v • z = 0), and only

equation (16a) must be satisfied.

Since equation (16a) is a constant of the

motion (eq. 8), it may be satisfied at the be-

ginning of the trajectory, and used to calculate

. However, it must first be verified that Jump

discontinuities in :and _ at intermediate boun-

dary points do not change the value of the con-

stant. This requires that

e = _ l + _ (eccentricity) (2lb)
Gm

G*

E = E-_ - __ (energy per unit mass) (21c)

h = r x v (angular momentum per unit (21d)

m_ss)

The required gradients are calculated to be

h(_ x r - r2 _)
_- g = P (22a)

v eG m

r 2

!(Vx£) -_-:
G * r 2

It is easily shown that equation (17) is satisfied

for the gradients in equation (22a) and (22b).

In fact, equation (17) is satisfied for ar_

function g of r, v, h and r • v. For such a

function g,

_v g = v + (h X:) + 8(: • :)



and

_r ^ _ _g
g = r + (_ x _) + $(r • v)

5Vvg xv + V_rg x r-- _vV xv

+_(hxT) xV+ 3---_---rxv
_(r" _)

• . V (e3)

+ __ x r = o (24)
_(_. v)

ilence the value of Z x v + _ x r is unaffected

by the Jump in _ and _ resulting from a function

g as defined above.

Boundar_ Value Problem

For the ATS-E mission, both fixed and

optimum parking orbit coast times were considered.

The transfer orbit coast time was always opti-

mized, however, along with the durations of the

first and second Centaur burns. Based on the

preceding discussion of the transversality equa-

tion, the initial and final conditions for the

two point boundary value problem are as follows

for the case where the parking orbit coast time

was optimized:

Initial Conditions Final Conditions

E d

r d

5d

rp, d (Parking orbit)

(r'z) = 0

(v'z) = o

k-i f o

i_ (Si-Sl+l) = 0

t-I
(sf_s °

ti (Second Centaur Burn) Z - i i+l" = 0
i=J

t m (Transfer Orbit Coast) (_ " G + _ " v) = 0

(2s)

If the desired final inclination is non-zero,

(7"_)
_) 0 are replaced bY iaand=(v?' x _) = O. If the par_ing

then and

(7 x _ + 7, x v)

orbit coast time is fixed, then an initial and

final condition are removed. These are t k and

k-i f o

(Si-Si+l) = 0
i=J

£

tj (First Centaur Burn)

tk (Parking Orbit Coast)

It should be recognized that there may be any

number of fixed stages between tA and tk, etc.

Also, the last three final conditions are evaluated

at intermediate points in the trajectory.

Appendix C

Two Point Boundarz Value Problem

The following technique was devised to syste-

matically proceed from a simple, easily converged

problem to the solution of the two point boundary

value problem for a circular synchronous equatorial

orbit.

A trajectory is obtained to a slightly ellip-

tical (parking) orbit with the desired perigee

radius without plane change with a 90 ° launch azi-

muth. This problem converges easily. Then the

ascent burn time is fixed at the value obtained

and a variable length parking orbit coast, a fixed

parking orbit perigee radius and a second burn are

added. This problem is targeted to the desired

apogee and 180 ° argument of perigee for first

equator crossing second burn. An inclination de-

crease of about two degrees is then added to these

final conditions and the problem is retargeted to

the augmented final conditions. Now the transfer

orbit coast (variable) and apogee burn (fixed or

variable) are added. This trajectory is integrated

to the end with the converged initlal guesses from

the last step. The final conditions achieved will

frequently be far from a circular synchronous equa-

torial orbit. However, specify the final condi-

tions actually achieved as the desired ones, and

optimize the problem. The parking orbit coast,

second burn, and transfer orbit coast durations

will change. Now alter the achieved final condi-

tions toward the desired ones Judiciously in steps,

retargeting at each step. In this manner, the

desired final orbit conditions may be obtained.

Now the ascent burn duration may be optimized.

Any sizable change in a constraint or final condi-

tion is best achieved by proceeding in steps. The

problem is quite nonlinear. Attempts to plot

initial conditions as functions of the final condi-

tions for extrapolation purposes were made. They

were generally unsuccessful.
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